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Abstract: A new approach for an efficient text analyser is proposed. The prosody generator-driven
method is employed to design an efficient text analyser for Mandarin text-to-speech. More simple
structure of text analysis, more suitable classification of linguistic features and more efficient
contribution of linguistic features to the prosody generator can be achieved. Three heuristic and
theoretical methods are used to analyse and examine the capability of each linguistic feature.
First, the contribution of each linguistic feature to the prosody generator is examined
experimentally. Secondly, the cross-influence of each linguistic feature on the prosody generator
is analysed. Thirdly, the problem of over- and under- classification of the linguistic features is
inspected. Finally, these three analytic results are referenced to design an efficient text analyser. In
total 35 243 Chinese characters are employed to examine the performance of our text analyser.
Only 79ms CPU time on a P4-1.4G PC is needed for word segmentation and POS tagging.
Correction rates of 97.5 and 93.2% are achieved for the word segmentation and POS tagging,
respectively. This confirms that the performance of our text analyser is very good. Moreover, a
Mandarin text-to-speech system is implemented to inspect the performance of the text analysis and
the contribution to the prosody generator. More natural and fluent speech is obtained under the
lower computation. The MOS of prosody of the synthesised and original speech are 4.2 and 4.8,
respectively, which is reasonably good.

1 Introduction

Text-to-speech (TTS), which automatically converts text
into running speech, is an important technology for
applications in multimedia and friendly UI. Many attractive
applications, such as e-mail reader, e-book, news reader etc.
are designed based on TTS technology. In general, TTS can
generate speech without limit according to the input text.
Natural and fluent speech is the most important issue for the
development of TTS.
A general TTS [1–6] system includes text analysis (TA)

[7–11, 35–37] prosody generator (PG) [12–23], synthesis
unit generator (SUG) [24], and speech synthesiser (SS) [25,
26]. The TA resolves the text syntactically or semantically
and extracts some linguistic features. Usually, the work of
TA needs help from a linguist. The PG receives linguistic
features and generates prosodic information. The prosodic
information includes the intonation contour, energy
envelope and duration pattern. The naturalness of
synthesised speech is controlled by the prosodic
information. The SUG generates the most suitable speech
templates for synthesised speech. Co-articulation rules for
each two adjacent templates are also employed to improve
the fluency of synthesised speech. The SS adopts prosodic
information and synthesis unit. Then, the algorithm of
prosodic modification is implemented on the synthesis unit
and the natural speech is generated.

In the past, much effort was paid to design a TTS with
high quality [1–6]. However, naturalness and fluency are
two important issues for the TTS system. Thus, most
researchers put their efforts into the prosody generator
[12–23] for the TTS system. In the general prosody
generator, two problems must be overcome to achieve
natural and fluent speech. One is a suitable model for the
prosody generator and the other is a suitable linguistic
feature for the prosody generator.

In the first problem, in the past, the rule-based and the
statistical-based approaches were employed to generalise
suitable prosodic information. The rule-based approach [2,
12, 17] used many pronunciation rules inferred by the
linguist to improve the speech quality for the TTS system.
However, the cross-influence of the pronunciation rules on
the prosodic information cannot be easily quantified and
inferred as independent rules. Moreover, these pronuncia-
tion rules must be inferred from the acoustic expert and the
linguist. The statistical approach [13, 15–19, 21–23] uses
the probability model or the neural network to infer
automatically the pronunciation rules. The natural prosodic
information and pronunciation rules are automatically
learned from the large database of natural speech. More-
over, the cross-influence of pronunciation rules on the
prosodic information can be memorised and simulated in the
joint probability of the probability model or the weight of
the neural network.

In the second problem, in the past, most linguists put their
efforts into the architecture of TA [7–11, 35–37]. They did
their best to find as many linguistic features as possible.
Thus, some high-level linguistic features, such as the
boundary of phrase [34], prosodic phrase, sub-sentence
etc. were analysed and extracted. In a general TTS system,
good prosodic information will generate good and natural
speech. However, more linguistic features will not guaran-
tee good prosodic information. But it will need much effort

q IEE, 2005

IEE Proceedings online no. 20045095

doi: 10.1049/ip-vis:20045095

The authors are with the Department of Electrical Engineering, National
Taipei University of Technology, Taipei, Taiwan, Republic of China

E-mail: hsf@ntut.edu.tw

Paper received 5th July 2004. Originally published online 20th June 2005

IEE Proc.-Vis. Image Signal Process., Vol. 152, No. 6, December 2005 793

Authorized licensed use limited to: Chin-Yi University of Technology. Downloaded on November 3, 2008 at 01:56 from IEEE Xplore.  Restrictions apply.



and dramatic computation for high-level linguistic features.
Moreover, some linguistic features will interfere and
degrade the performance of PG.

On the other hand, most experts on acoustics and
computer science put their efforts into a good statistical
model for PG and SUG. However, in order to have the best
prosodic information, not only is a good PG model needed,
but also the most suitable linguistic features are needed.
Thus, suitable linguistic features driven by the performance
of the PG is the best policy. In the other words, the best
linguistic features used to generate the best prosodic
information must be inspected and determined by the
performance of the PG. It means that linguistic and acoustic
analyses need to be considered together for the best speech.

In this paper, an efficient TA using a PG-driven approach
[27] is proposed. An RNN-based prosody generator [16, 18,
21] is employed to analyse and inspect this approach. Three
important topics are analysed. First, the contribution of each
linguistic feature on the PG is examined. Secondly, the
cross-influence of each linguistic feature is analysed. Lastly,
the problem of over-classification of linguistic features is
examined. Finally, an efficient TA is implemented accord-
ing to these analysis results. A Mandarin TTS with RNN-
based PG is implemented to examine the performance.
An efficient TA with low computation and high perform-
ance on PG is achieved. The synthesised speech is more
natural and fluent. The difficulty of high-level analysis on
input text is avoided. The computation requirement for the
text analysis is reduced dramatically.

2 Text-to-speech system

In the general text-to-speech (TTS) system, there are four
basic subsystems. Figure 1 shows the basic block diagram of
a general TTS system. It consists of the text analysis, the
prosody generator, the synthesis unit generator and the
speech synthesiser. The text analysis analyses text syntacti-
cally and=or semantically to extract some linguistic
features. The prosody generator adopts linguistic features
and generates prosodic information, such as pitch contour,
energy contour and duration pattern. To make the
synthesised speech more natural and intelligent is its main
goal. The synthesis unit generator generates the synthesis
unit according to the phonetic symbol. To make the
synthesised speech more clear is its main goal. In general,
the co-articulation effect elimination will also be employed
to smooth the spectrum and energy between the two
synthesis units and make synthesised speech sound more

fluent. The speech synthesiser makes the prosodic modifi-
cation on the synthesis unit and generates the synthesised
speech. The ability of prosodic modification of the synthesis
unit is important for the general speech synthesiser.

In this paper, efficient text analysis for the prosody
generator-driven approach is considered. Thus, the basic
structure of text analysis and prosody generator in our
implementation will be described in the following Subsec-
tions.

2.1 Text analysis

In the structure of text analysis, a dictionary that contains
more than 80 000 Chinese words and a score function with
first-order Markov chain are employed to implement the
word segmentation and POS (part of speech) tagging.
The score function Sðwi; tiÞ is defined as below:

Sðwi; tiÞ ¼ L2ðw1Þ þ a1Fðw1Þ þ a2 logðPðt1ÞÞ

þ
XN
i¼2

½L2ðwiÞ þ b1FðwiÞ þ b2 logðPðti�1jtiÞÞ�

ð1Þ
The wi and ti is the ith word and POS, respectively. LðwiÞ is
the number of the Chinese character in the word wi. Pðti�1

jtiÞ is the conditional probability of POS ti�1 and ti. FðwiÞ is
the occurrence probability of word wi. a1; a2; b1 and b2 are
constants. The linguistic features include the tone type
(Tone), the consonant initial (Ini), the vowel final (Fin), the
part-of-speech (POS), the word length (Len), the punctua-
tion mark (PM), and the indicator (L), which shows the first,
middle or last character in a word used to analyse the
contribution to the prosodic information.

2.2 Prosody generator

The RNN-based prosody generator is used in this paper.
Figure 2 shows the block diagram of the three-layer RNN
[21]. The input linguistic features include the tone (Tone),
the consonant initial (Ini), the vowel final (Fin), the part-of-
speech (POS), the word length (Len), the punctuation mark
(PM) and the indicator (L), which shows the first, the
middle, or the last character in a word. The eight outputs of
prosodic parameters include four parameters of pitch
contour, energy, pause duration, initial duration and final
duration. The RNN operates with two clocks: one is the
word sequence and the other is the Chinese character
sequence. ‘Hidden layer I’ adopts the word-level linguistic

Fig. 1 Block diagram of general TTS system Fig. 2 Block diagram of RNN-based prosody generator
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features, including ‘POS’, ‘Len’, and ‘PM’ and simulates
the global declination effect of a whole sentence. ‘Hidden
layer II’ adopts the syllable-level linguistic features,
including ‘Tone’, ‘Ini’, ‘Fin’, and ‘L’ and generates the
prosodic information associated with each syllable. The
‘output layer’ is a mechanism of linear combination. It can
generate the value of prosodic information directly. The
error back propagation (EBP) algorithm is used to adapt the
weights of RNN.

3 System description

In this Section, three topics will be discussed in detail: the
contribution of each linguistic feature on the prosody
generator; the analysis of the cross-influence on the
prosody generator between each linguistic feature; and the
analysis of classification of each linguistic feature.

3.1 Contribution of linguistic features

The contribution of each linguistic feature (LF) to the PG is
determined by the performance of the RNN-based PG.
The score function for each LF’s contribution to the
prosodic parameter PP is defined as RppðLFÞ; which is
equal to the value of the root-mean-square-error (RMSE)
between the real and synthesised prosodic parameters.

RppðLFÞ ¼
1

N

XN
n¼1

XJ
j¼1

½PjðnÞ � P̂PjðnÞ�2
( )0:5

ð2Þ

The PjðnÞ is the original prosodic parameter with the jth

dimension at the nth syllable. The P̂PjðnÞ is the synthesised
prosodic parameter of the jth dimension at the nth syllable.
The values of N are 28 293 and 6 950 for the inside and
outside tests, respectively. The value of J is the dimension
of the prosodic parameter PP. LF, defined below, is the set
of linguistic features:

LF � fTone; Ini;Fin; L;PM; Len;POSg
PP is the set of prosodic parameters, which is defined as:

PP� fPitch;Pause Dur:; Initial Dur:;Final Dur:;Energyg

For a fixed linguistic feature LF, the R greater value of that
is obtained, the more contributions on PG will be presented.
The value of R can help us to realise the capability of each
linguistic feature. Furthermore, an efficient text analyser can
be implemented according to these results.
For a more precise definition, the RMSE of each LF

against the pitch contour can be defined as:

RPitchðLFÞ ¼
1

N

XN
n¼1

X3
j¼0

½ pthjðnÞ � pth
^

jðnÞ�2
( )0:5

ð3Þ

pthjðnÞ is the real pitch coefficient at the jth dimension at the

nth syllable. pth
^

jðnÞ is the synthesised pitch coefficient.
These pitch coefficients are extracted from the pitch contour
by the orthogonal expansion algorithm [3]. These relative
equations are defined as:

pthjðnÞ ¼
1

L

XL�1

l¼0

Fj

l

L

� �
� pitchðn; lÞ ð4Þ

pitch
^

ðn; lÞ ¼
X3
j¼0

Fj

l

L

� �
� pthjðnÞ ð5Þ

pitchðn; lÞ is the real fundamental frequency at the lth frame

and the nth syllable. The pitch
^

ðn; lÞ is the synthesised
fundamental frequency. Fjðl=LÞ is the orthonormal coeffi-
cient derived by the Gram-Schmit algorithm [3]. The value
of L is the frame number of the nth syllable. The RMSE of
pause duration, initial duration, final duration and energy for
each LF can also be obtained from the following equations:

RPause Dur:ðLFÞ ¼
1

N

XN
n¼1

½ pauseðnÞ � pause
^ ðnÞ�2

( )0:5

ð6Þ

RInitial Dur:ðLFÞ ¼
1

N

XN
n¼1

½initialðnÞ � initial
^

ðnÞ�2
( )0:5

ð7Þ

RFinal Dur:ðLFÞ ¼
1

N

XN
n¼1

½ finalðnÞ � final
^

ðnÞ�2
( )0:5

ð8Þ

REnergyðLFÞ ¼
1

N

XN
n¼1

½energyðnÞ � energy
^ ðnÞ�2

( )0:5

ð9Þ

Moreover, the conditional entropy of linguistic feature and
prosodic information can help us to predict the capability of
each LF before the training process. In this paper, the
normalised conditional entropy of pitch contour with regard
to each LF is discussed. It can be calculated from three
steps. First, the vector quantisation (VQ) algorithm is used
to classify the pitch contour pattern of training data into 64
clusters. Secondly, the conditional entropy of pitch contour
with regard to each LF can be estimated from:

HðPitchjXÞ ¼
XNLðXÞ
i¼1

pðCXðiÞÞHðPitchjCXðiÞÞ ð10Þ

NLðXÞ � f5; 22; 39; 4; 5; 43; 12g are the class numbers of
each LF. pðCXðiÞÞ is the probability of the ith class on
LF,CXðiÞ: HðPitchjCXðiÞÞ is the conditional entropy of pitch
contour with regard to the ith class of LF. It can be obtained
from

HðPitchjCXðiÞÞ ¼ �
XNV

j¼1

pðCVð jÞjCXðiÞÞ

� log2½ pðCVð jÞjCXðiÞÞ� ð11Þ
where pðCVð jÞjCXðiÞÞ is the conditional probability of the
jth cluster CVð jÞ in the VQ algorithm under the ith class of
LF. NV is the number of the cluster and is defined as 64.
Lastly, the normalised conditional entropy with their
maximum entropy can be defined as

HnorðPitchjXÞ ¼
HðPitchjXÞ

HmaxðPitchjXÞ
ð12Þ

whereHmaxðPitchjXÞ is the maximum entropy and is defined
as

HmaxðPitchjXÞ ¼
XNLðXÞ
i¼1

pðCXðiÞÞ log2½NCXðiÞ� ð13Þ

NCXðiÞ represents the pattern numbers in the ith class and is
expected to have a uniform distribution.
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3.2 Cross-influence of each linguistic feature

The cross-influence is regarded as the relation between each
set of two or more linguistic features and its contribution to
the prosody generator. The analysis result of the cross-
influence can help us to select the optimal combination of
linguistic features and design an efficient TA. There are four
relations of cross-influence, defined as:

a Co-operation:

DRppðAþ BÞ>DRppðAÞ þ DRppðBÞ ð14Þ

where DRppðXÞ ¼ RppðNullÞ � RppðXÞ is the differential
RMSE between the ‘null’ case and the ‘X’ case. ‘X’ is one
or a set of LF. Then, DRppðAþ BÞ represents the differential
RMSE with two LFs (‘A’ and ‘B’) simultaneously.

b Independence:

DRppðAþ BÞ ¼ DRppðAÞ þ DRppðBÞ ð15Þ
c Overlapped:

Max½DRppðAÞ;DRppðBÞ�<DRppðAþ BÞ<DRppðAÞ

þ DRppðBÞ ð16Þ
d Interference:

DRppðAþ BÞ<Max½DRppðAÞ;DRppðBÞ� ð17Þ

3.3 Classification of linguistic features

Suitable classification of each LF will give the best
performance for the prosody generator. On the other hand,
the redundancy of computation on TA and degradation of
naturalness on PG will be obtained. There are two problems
of classification. One is over-classification. The other is
under-classification. The problems of classification can be
seen from the value of normalised differential RMSE, which
is normalised by its entropy with respect to each LF.
The normalised differential RMSE is defined as:

NRppðXÞ ¼
DRppðXÞ
HðXÞ ð18Þ

where HðXÞ¼�
PNLðXÞ

i¼1 pðCXðiÞÞlog2½ pðCXðiÞÞ�; represents
the entropy of each LF. Two conditions of classification will
be discussed in the following:

a Over-classification:

HðXC1Þ<HðXC2Þ; NRppðXC1Þ>NRppðXC2Þ ð19Þ

C1 is smaller than C2: HðXC1Þ and HðXC2Þ represent the
entropy of different classifications with the LF ‘X’,
respectively.

b Under-classification:

HðXC1Þ<HðXC2Þ; NRppðXC1Þ<NRppðXC2Þ ð20Þ

4 Experimental results

In this paper, there are 35 243 syllabic waveforms and their
relative Chinese characters, which are divided into inside set
with 28 293 characters and outside set with 6950 characters,
and are employed to train and examine our approach.
A complete TA is first employed to extract the as many LFs
as possible. Equation (1) is used as the cost function for the
word segmentation and POS tagged. Next the RNN-based
PG is employed to examine the contribution of each LF.
Seven types of LF and five types of prosodic information are
analysed, respectively and simultaneously. Three important

topics are analysed and discussed via the experimental
results.

In the first topic, the RMSE of the RNN-based pitch
generator for each LF is estimated and given in Table 1. In
the case ‘Total’, the values of RMSE with 8.486 and 10.798
are obtained for inside and outside tests, respectively. The
RMSE of pitch contour with inside test is also shown in
Fig. 3. The ‘Tone’ will have a greater contribution than the
others. It means that the ‘Tone’ is the best LF for pitch
generator. Moreover, the ‘Fin’ and ‘L’ will have almost no
contribution to pitch generator. The ‘Null’ means that no LF
is employed to generate the pitch. Its RMSE is equal to the
standard deviation of pitch. Table 2 gives the normalised
conditional entropy, which is estimated by using (10)–(13).
The large value of the entropy means that the pitch is almost
uniformly distributed for each type of LF. Table 2 is
estimated by theoretical analysis and Fig. 3 is obtained by
experimental results. The ‘Tone’ is the best LF for the pitch
generator. Moreover, the ‘Fin’ has almost no contribution to
the pitch generator. The major results of Fig. 3 and Table 2
seem consistent. However, the minor results of the other LFs
have some little inconsistency between Fig. 3 and Table 2. If
the sequence of training data of RNN is distributed all over,
the RNN can reach the best performance. Meanwhile, Fig. 3
and Table 2 will be consistent. Otherwise, the result by
theoretical analysis will have some differences from the
experimental result. These results of Fig. 3 and Table 2 have
some inconsistency. It points out that our training data needs
more suitable arrangement.

For the second topic, Table 3 shows the value of
differential RMSE of prosodic information for each
linguistic feature set. ‘Iniþ Fin’ means that the initial and
final types of syllable are taken as LF, simultaneously.
‘Toneþ Iniþ Fin’ means that the tone, the initial and the
final types of syllable are taken as LF, simultaneously.
Table 4 shows the type of cross-influence on the prosodic
information for some LFs. The ‘co-operation’ case is the
best solution and the ‘interference’ case must be avoided.
Table 4 points out the best direction for the implementation
of the TA system. In Table 4, the pitch and final duration are
located in ‘overlapped’ or ‘co-operation’ for each set of

Table 1: RMSE of pitch contour with each linguistic
feature for inside and outside tests

RMSE of Pitch contour ð50�sÞ Inside test Outside test

Null 16.625362 17.168571

Tone 10.246050 11.127300

Ini 13.456861 14.742570

Fin 16.035355 17.005941

L 16.150660 16.880539

Len 14.898714 15.727992

POS 12.975919 14.729033

PM 13.866839 14.636217

Total 8.485972 10.798090

Fig. 3 RMSE of synthesised pitch for each linguistic feature
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linguistic feature. It means that more linguistic features will
improve the performance on pitch and final duration.
The ‘Tone’ has great contribution on the pitch. However,
the ‘Toneþ POS’ is the best LF than ‘Toneþ Iniþ Fin’.
The word-level LF ‘POS’ has more contribution than the
syllable-level LF such as ‘Ini’ and ‘Fin’. From above results,
maybe the ‘POS’ will have a larger contribution on the
decrease effect of pitch contour over a whole sentence.
Moreover, ‘POS’ and ‘Ini’ make large contributions to the
pause and initial durations, respectively. The word-level LF,
such as ‘POS’ and ‘PM’, will make a larger contribution to
the energy than the other LFs.
For the third topic, Table 5 lists the value of differential

RMSE and the situation of classification on the final type of
syllable and the POS type of word. ‘Fin39’ and ‘Fin17’
represent the different classification of 39 and 17 classes on
the final type, respectively. ‘POS43’ and ‘POS13’ represent
the 43 and 13 classes on the POS type. In Table 5, the final
type with ‘Fin39’ is over-classified for the initial duration,
final duration and energy generators. But the ‘Fin17’ is
under-classified for the pitch and pause duration generators.
Moreover, the POS type with ‘POS43’ is over-classified for

pitch, initial duration and final duration generators.
According to the results in Table 5, a suitable classification
for each LF for the prosody generator can be achieved.
Figure 4 shows the RMSE with the original classification of
LF (total) and the simple classification of final, POS and PM
types ðtotal0Þ: The performance with the (total0) approach
has no obvious degradation. But the computation of the
(total0) approach is reduced dramatically in the TA.

According to above analysis results, an efficient TA
with the best performance can be easily achieved. In total
35 243 Chinese characters are employed to test the
performance of our TA. Only 79ms CPU time for the
PC (Pentium-IV, 1.4 GHz) is achieved. Moreover, correc-
tion rates of 97.5 and 93:2% are achieved for the word
segmentation and POS tagging. It confirms that the
performance of our text analyser is very good.
A Mandarin text-to-speech system has been implemented
to inspect the performance of text analysis and the
contribution to the prosody generator. More natural and
fluent speech is obtained with less computation. The MOS
of prosody of the synthesised and original speech are 4.2
and 4.8, respectively, which is reasonably good.

Table 2: Normalised conditional entropy of pitch for each linguistic feature

Tone Ini Fin L Len POS

HðPitchjXÞ 0.390542 0.525332 0.556035 0.433985 0.430717 0.523520

Table 3: Differential RMSE of prosodic information for each linguistic feature

Pitch ð50�sÞ Pause duration (10ms) Initial duration (10ms) Final duration (10ms) Energy (dB)

Tone 6.379312 0.096487 0.168615 0.809698 0.29744

Ini 3.168501 0.171919 2.678541 0.967988 0.625193

Fin 0.590007 0.019043 0.371558 0.501969 0.414191

L 0.474702 0.076356 0.027458 0.347682 0.128108

Len 1.726648 0.110429 0.074208 0.42742 0.359136

POS 3.649443 1.033824 0.165039 0.631312 1.575942

PM 2.758523 0.094571 0.065614 0.461359 1.523791

Toneþ Ini 6.599831 0.208539 2.677076 1.238881 0.776281

Toneþ Fin 6.587993 0.10044 0.646803 1.263239 0.971365

Toneþ L 6.486928 0.223872 0.169743 0.97146 0.376178

Iniþ Fin 4.183168 0.148693 2.680984 1.432132 0.964136

Iniþ L 3.342702 0.32573 2.675802 1.096333 0.569848

Finþ L 1.343596 0.086047 0.446567 0.880998 0.476125

Toneþ Iniþ Fin 6.771739 0.192073 2.744602 1.613471 1.383982

POSþ Len 3.784235 0.790399 0.163139 0.759569 1.264691

POSþ PM 3.829629 0.940603 0.163008 0.651837 0.715341

Lenþ PM 3.263237 0.23402 0.111337 0.719843 1.0488

Toneþ POS 7.313634 1.274107 0.225383 0.981465 2.538744

Toneþ Len 6.568548 0.316116 0.150855 0.881406 0.931149

Toneþ PM 6.838903 0.109319 0.16344 0.855223 0.968483

Iniþ POS 4.234988 0.545472 2.668594 1.182875 1.776917

Iniþ Len 3.561855 0.309969 2.628509 1.002126 0.762015

Iniþ PM 3.55621 0.198324 2.662113 1.017818 2.48475

Finþ POS 4.057612 0.880022 0.524518 1.010926 1.891361

Finþ Len 2.52902 0.090341 0.450022 0.82832 0.67397

Finþ PM 3.25448 0.090583 0.458897 0.944236 1.077918

Lþ POS 4.028324 0.952697 0.216917 0.992081 1.515554

Lþ Len 1.78791 0.15412 0.086597 0.487867 0.383718

Lþ PM 3.249672 0.212944 0.093472 0.763406 1.644841
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5 Conclusions

A new approach to the efficient text analysis driven by the
prosody generator for Mandarin TTS is proposed. The text
analysis and the prosody generator are considered and
designed together. Each linguistic feature is employed to
analyse the contribution to the prosody generator. Three
heuristic and theoretical analysis methods are employed to
examine the capability of each LF. The problem of
contribution, cross-influence and over-classification of
each LF can be easily inspected. Finally, an efficient TA
can be easily achieved for suitable linguistic features.
Moreover, the best prosody generator can be achieved and
more natural speech can be achieved for the TTS system.

In our approach, the performance of linguistic features for
TTS is well examined by theoretical and experimental
methods. Complex analysis by a linguist on high-level
linguistic features is avoided. Moreover, the difficult
analysis on the phrase [8, 28, 29], the preposition [30], the
sub-sentence, the prosodic boundary [31], the breathable
point or the prosodic phrase [32, 33] can also be avoided.
The large requirement on computation is reduced. The cost
and TTS system on chip (SOC) become possible.

From the analysis results, a suitable prosody generator is
more important than linguistic features. The best speech
comes from a suitable prosodic parameter. The major part of
the prosodic parameter is a time-variant function. The time-
causal model, such as the RNN model or the n-order
Markov chain, will have good performance. The minor part
of the prosodic parameter is influenced by some low-level
linguistic features. Thus, more attention must be paid to the
prosody generator. Analysis of high-level linguistic features
can be avoided.
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